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ABSTRACT 

Unmanned ground vehicles (UGVs) are gaining 

importance and finding increased utility in both military and 

commercial applications. Although earlier UGV platforms were 

typically exclusively small ground robots, recent efforts started 

targeting passenger vehicle and larger size platforms. Due to 

their size and speed, these platforms have significantly different 

dynamics than small robots, and therefore the existing hazard 

avoidance algorithms, which were developed for small robots, 

may not deliver the desired performance. The goal of this paper 

is to present the first steps towards a model predictive control 

(MPC) based hazard avoidance algorithm for large UGVs that 

accounts for the vehicle dynamics through high fidelity models 

and uses only local information about the environment as 

provided by the onboard sensors. Specifically, the paper 

presents the MPC formulation for hazard avoidance using a 

light detection and ranging (LIDAR) sensor and applies it to a 

case study to investigate the impact of model fidelity on the 

performance of the algorithm, where performance is measured 

mainly by the time to reach the target point. Towards this end, 

the case study compares a 2 degrees-of-freedom (DoF) vehicle 

dynamics representation to a 14 DoF representation as the 

model used in MPC. The results show that the 2 DoF model can 

perform comparable to the 14 DoF model if the safe steering 

range is established using the 14 DoF model rather than the 2 

DoF model itself. The conclusion is that high fidelity models 

are needed to push autonomous vehicles to their limits to 

increase their performance, but simulating the high fidelity 
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models online within the MPC may not be as critical as using 

them to establish the safe control input limits. 

INTRODUCTION 

Unmanned ground vehicles (UGVs) hold great potential 

for increased safety, performance, and convenience, and are 

therefore attracting interest for both commercial and military 

applications. Small ground robots that are either teleoperated or 

semi or fully autonomous are already in use. Currently, 

particular interest is in autonomous UGVs that are at least the 

size of a passenger vehicle. In the commercial field, almost all 

major automakers and even companies from other sectors are 

pursuing autonomous passenger vehicles [1]. As a military 

example, the Autonomous Platform Demonstrator (APD) is a 

9.3 ton vehicle that has been used to develop, integrate, and test 

many next generation UGV mobility technologies such as 

hybrid electric drive systems, advanced suspension systems, 

thermal management systems, and UGV safety systems [2]. It 

is capable of reaching speeds up to 50 miles per hour (22.35 

m/s) and performing maneuvers at those speeds [2]. 

One important problem in autonomous UGVs regardless of 

their size is hazard avoidance, which refers to the problem of 

safely maneuvering around obstacles while traveling to a target 

point. Many hazard avoidance algorithms have been developed 

in the literature that allow for fast, continuous, and smooth 

motion of the UGV among unexpected obstacles [3]. These 

algorithms generate a hazard-avoiding action in response to 

online sensor signals. Some early examples include the 

artificial potential field method [4, 5], the vector field 
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histogram method [3, 6-10], and the dynamic window approach 

[11, 12]. However, these algorithms typically focus on small 

ground robots and hence rely on assumptions such as 

representing the vehicle as a point, which do not hold for larger 

UGVs. Thus, hazard avoidance algorithms developed for small 

UGVs may not deliver the desired performance in larger UGVs. 

More recent work aimed to improve the algorithms 

originally developed for small robots and to adapt them to 

large, high-speed UGVs. For example, Shimoda et al. [5] used 

trajectory space based potential field method to navigate a high 

speed UGV on rough terrain, avoiding discrete static hazards 

and dynamically inadmissible maneuvers.  A potential field is 

constructed in the trajectory space, which is a two-dimensional 

space of a UGV’s instantaneous path curvature and longitudinal 

velocity, and vehicle maneuvers are selected based on the 

properties of the field. The potential field is defined as a sum of 

potential functions relating to the waypoint location, desired 

velocity, hazard, rollover and side slip constraints. Although 

computationally efficient, this method does not guarantee 

feasibility or optimality [13]. 

To address the optimality problem, more rigorous methods 

have been pursued leveraging the model predictive control 

(MPC) approach. MPC is a form of control in which the current 

control action is obtained by solving a finite horizon open-loop 

optimal control problem using the current state of the plant as 

the initial state; the optimization yields an optimal control 

sequence and the first control in this sequence is applied to the 

plant. MPC is a promising approach for hazard avoidance due 

to its capability to handle input saturation, system nonlinearity, 

and state constraints in a dynamic environment. For example, 

Tahirovic and Magnani [14] provided a framework for 

incorporating a vehicle model into navigation by using an 

adapted version of passivity-based nonlinear model predictive 

control to extend the convergent dynamic window approach 

[12]. It can be considered a generalized navigation planning 

technique able to include the high fidelity models required to 

describe the dynamics of vehicles moving outdoor on rough 

terrain.  

Even though this work and several others [15-17] 

demonstrated successful application of MPC to hazard 

avoidance, several research questions still remain to be 

addressed. For example, the passivity-based MPC navigation 

algorithm assumes the environment is completely known. In 

reality, only local information from onboard sensors will be 

available. Furthermore, to reduce the computational load, only 

simple vehicle dynamics models such as the 2 degrees of 

freedom (DoF) representation have been considered so far as 

the model in MPC. As pointed by Park [15], only when the 

assumptions used to derive the simplified model are satisfied, 

the actual vehicle can track the generated trajectory based on 

this simplified model. The level of complexity of the model that 

needs to be used in MPC for best performance is unknown. 

Therefore, the goal of this paper is twofold: (1) to describe 

an MPC based hazard avoidance algorithm that works only 

with local information about the environment from the onboard 

sensors; and (2) to evaluate on a case study the performance of 

the algorithm with low versus high fidelity vehicle models. A 

typical 4-wheel truck is considered as an example vehicle 

platform. Regarding the first goal, the vehicle is assumed to be 

equipped with a light detection and ranging (LIDAR) sensor. 

Regarding the second goal, the performance is mainly 

measured by the time to reach the target; the best performance 

is achieved when the vehicle reaches the target safely and in 

minimum time. Two different representations of vehicle 

dynamics within MPC are compared; a 2 DoF representation as 

a lower fidelity model and a 14 DoF representation as a higher 

fidelity model.  

Throughout the paper it is assumed that the computational 

power needed for using high fidelity models within MPC can 

be met in real time by leveraging the recent developments in 

high power computing capabilities [18]. Thus, computational 

aspects of the algorithm are not discussed and computational 

time is not used as a performance metric. 

The rest of the paper is organized as follows. First, the 

MPC based hazard avoidance algorithm is presented. The 

vehicle models, constraints, cost function, and dynamic 

optimizer are described in detail. Simulation results are 

presented next using two different obstacle maps to validate the 

proposed approach and evaluate its performance with 2 DoF 

versus 14 DoF model in the MPC. Finally, the limitations of 

this study are outlined to guide future research and conclusions 

are drawn. 

MPC-BASED HAZARD AVOIDANCE 

The basic principle of MPC is illustrated in Fig. 1. At time 

step k , starting from the sampled initial value,  an optimal 

control input u  is computed by solving an open-loop, 

constrained, finite-time optimal control problem for the 

prediction horizon p . The resulting estimated optimal output

ŷ  satisfies the pre-defined constraints and minimizes a cost 

function. Only the first value of the computed control sequence 

is applied. Due to model simplifications, model parameter 

 

FIGURE 1. BASIC PRINCIPLE OF MPC 
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uncertainties, and/or other types of noise and uncertainties, the 

actual output y  will be different from the predicted value. 

Therefore, at the next time step 1k + , the optimal control 

problem is solved again over a shifted horizon based on the 

new state measurements. This process is thus iterated at each 

time step. 

Figure 2 illustrates at a high level how MPC can be utilized 

for hazard avoidance purposes. The three main components of 

the MPC-based hazard avoidance algorithm are the vehicle 

model, the cost function and constraints, and the dynamic 

optimizer. These components will be discussed in detail below. 

The outputs of the hazard avoidance algorithm are the control 

signals for the UGV. In general, they are the steering wheel 

angle, throttle and brake pedal positions; however, for the 

purposes of this paper, it is assumed that the vehicle speed is 

constant and thus only the steering angle is considered as the 

control signal. The UGV will in reality be an actual vehicle 

platform; however, this work is simulation based and therefore 

the UGV is represented using a vehicle model, which will also 

be described below. The state estimator block is needed to 

estimate the full state of the vehicle from the control signals 

and measured outputs to be used as the initial condition for the 

vehicle model used in MPC. In this work, since the UGV is 

simulated, the full state information is available and hence the 

state estimator is not considered. Finally, the information about 

the environment is assumed to be obtained using a LIDAR. 

The rest of this section describes the vehicle models, cost 

function and constraints, and the dynamic optimizer used in this 

work. 

Vehicle Model 
There are two places in the general schematic in Fig. 2 

where a vehicle model is used in this work. To validate the 

hazard avoidance algorithm in simulation, a high-fidelity 

vehicle model is needed to represent the UGV. A 14 DoF 

representation is used for this purpose as a first step towards 

higher fidelity representations. In addition, a model of the 

vehicle is also needed in the MPC. Towards this end, this work 

considers two different representations: a 2 DoF model and the 

14 DoF model. Both models are described next. 

The 14 DoF vehicle model, which consists of a single 

sprung mass connected to four unsprung masses, is 

implemented as shown in Fig. 3 [19]. The sprung mass is 

represented as a plane and is allowed to pitch, roll, and yaw, as 

well as displace in vertical, lateral and longitudinal directions. 

The unsprung masses are allowed to bounce vertically with 

respect to the sprung mass. Each wheel is also allowed to rotate 

along its horizontal axis and only the two front wheels are free 

to steer. In summary, this model consists of 6 DoF at the 

vehicle chassis center of gravity (CG), and 2 DoF at each of the 

four wheels, including vertical suspension travel and wheel 

spin. 

To represent the tire traction forces, the lookup table based 

models used in TRUCKSIM [20] are adopted. Nonlinear tables 

are used to represent lateral forces and aligning moments as a 

function of slip angle and vertical load. Another nonlinear table 

is used to represent longitudinal forces as a function of slip 

ratio and vertical load. Two-dimensional linear data 

interpolation is used to determine the forces and moment for a 

specific combination of slip and load. Combined slip effects are 

not considered. 

This vehicle model is parameterized for a typical 4 wheel 

 

FIGURE 2. SCHEMATIC OF MPC-BASED HAZARD 
AVOIDANCE ALGORITHM 

 

FIGURE 3. 14 DOF VEHICLE MODEL SCHEMATIC 

 

FIGURE 4. 2 DOF VEHICLE MODEL SCHEMATIC 
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truck and used in the simulation to represent the real system. 

The standard vehicle model used in the state-of-the-art 

MPC-based hazard avoidance algorithms is a 2 DoF vehicle 

representation, with either assuming constant cornering 

stiffness or augmenting the vehicle model with Pacejka Magic 

Formula Tire Model [14-17]. Thus, as a baseline, a 2 DoF 

vehicle model is also used in this study with a constant 

cornering stiffness approach. The model is illustrated in Fig. 4.  

The parameters of the 2 DoF and 14 DoF models are set 

identical except for the tire parameters. The 14 DoF is using a 

tire model as described above, whereas the 2 DoF model is 

using the constant cornering stiffness approach. To minimize 

the difference between the predictive capabilities of the two 

models, the cornering stiffnesses used in the 2 DoF model are 

tuned to match the response of the 2 and 14 DoF models as 

closely as possible. Figures 5 and 6 compare the vehicle 

trajectories and lateral accelerations, respectively, predicted by 

the two models under different steering conditions. The results 

confirm the finding in the literature that the 2 DoF starts losing 

its validity after a lateral acceleration of 0.5 g [15]. 

Cost Function and Constraints 

The cost function and constraints need to be specified to 

satisfy the objective of avoiding the locally detected obstacles 

while guaranteeing vehicle safety and minimizing the travel 

time. When the speed of the vehicle is constant as in this study, 

minimizing the travel time is the same as minimizing the travel 

distance. 

Constraints. The constraints represent the hard 

requirements of avoiding collision and ensuring vehicle safety. 

These requirements are hard in the sense that their violation is 

not allowed under any circumstances. 

To avoid collision with the obstacles, a minimum 

acceptable distance between the center of gravity of the vehicle 

and any detected points by the LIDAR sensor (i.e., the 

boundaries of the obstacles) is defined and set to 3 meters.  

In this study, ensuring vehicle safety is translated to 

avoiding tire lift-off for the 14 DoF model. This is a 

conservative criterion used to prevent rollover [21]. It is also 

part of the vehicle acceptability tests used in the military. Note 

that the roll angle or lateral acceleration threshold can also be 

used to define the safety of a vehicle [22, 23]. Since the 2 DoF 

cannot predict tire lift-off, a maximum lateral acceleration of 

0.5 g, i.e., the model’s reported range of validity [15], is used as 

the safety limit for the 2 DoF model. 

As shown in Fig. 7, for the 14 DoF model traveling at a 

constant speed, when the steering angle increases, the vertical 

tire force of one of the tires becomes smaller. Hence, there 

exists a maximum steering angle such that the minimum 

vertical tire force is close to zero (4.3° in the example shown). 

When the steering angle increases by 0.1°, tire lift-off is 

observed (4.4° in the example shown). 

Similarly, the maximum allowable lateral acceleration  

FIGURE 5. VEHICLE TRAJECTORIES FOR 20 M/S VELOCITY 
PREDICTED BY THE TWO MODELS 

 

FIGURE 6. LATERAL ACCELERATIONS FOR 20 M/S 
VELOCITY PREDICTED BY THE TWO MODELS 

 

FIGURE 7. VERTICAL TIRE FORCE FOR VARIOUS 
STEERING COMMANDS AT 20 M/S FOR THE 14 DOF MODEL 
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places an upper limit to the steering angle in the 2 DoF model. 

Figure 8 illustrates how lateral acceleration increases with 

steering angle. 

Note that the maximum steering angle is a function of 

vehicle speed. There exist other factors that can change the 

maximum steering angle, for example, the slope of the terrain. 

However, in this study, the vehicle is assumed to move on a 

constant friction flat surface. Therefore, the maximum steering 

angle is only a function vehicle speed. For speeds ranging from 

10 m/s to 30 m/s, the relationship between the maximum 

steering angle and the speed is shown in Fig. 9 for both the 2 

DoF and 14 DoF models. This also corresponds to a minimum 

turning radius as shown in Fig. 10. 

In summary, the two hard requirements considered in this 

work are maneuvering without collision and without tire lift-off 

(14 DoF) or excessive lateral acceleration (2 DoF). For the first 

requirement, obstacle information from the LIDAR is used. The 

minimum acceptable distance between the center of gravity of 

the vehicle and obstacles is set to 3 meters. For the second 

requirement, if the steer angle is below the maximum allowable 

value at a given speed, the safety of the vehicle can be 

guaranteed when the vehicle moves on a constant friction flat 

surface. Hence, the search space for the steering angle is 

limited to the feasible space. 

These hard requirements are implemented as hard 

constraints in the sense that if a control input sequence is 

predicted to cause any constraint violation, it will not be 

considered as a candidate. 

Cost Function. The cost function defines the soft 

requirement; i.e., in what sense the trajectory is optimal. Two 

terms are included in the current formulation as follows 

 ( ) ( )0 0gJ d t nT w t nTα= + + +   

where 

( ) ( )( ) ( )( )

( )
( )
( )

2 2

0 0 0

01

0

0

tan

g g g

g

g

d t nT x t nT x y t nT y

y y t nT
t nT

x x t nT
α −

+ = + − + + −

 − +
+ =   − + 

  

with 0t  representing the initial time, n  the number of 

prediction steps, T  the sampling time, x  and y  the 

position of the UGV, and gx  and gy  the position of the goal. 

 

FIGURE 8. LATERAL ACCELERATION FOR VARIOUS 
STEERING COMMANDS AT 20 M/S FOR THE 2 DOF MODEL 

 

FIGURE 9. MAXIMUM STEERING ANGLE AS A FUNCTION 
OF SPEED 

 

FIGURE 10. MINIMUM TURNING RADIUS AS A FUNCTION 
OF SPEED 

 

FIGURE 11. THE COMPONENTS OF THE COST FUNCTION 
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The first term encourages a shorter distance between the end of 

prediction horizon and the goal. Due to the constant speed 

assumption in this work, this term also aims to minimize the 

remaining travel time. Hence, travel time is not explicitly 

included in the cost function. The second term penalizes the 

deviation of the heading angle from the goal direction. The two 

terms are linearly combined using a relative weight w . Figure 

11 illustrates components of the cost function. 

Dynamic Optimizer 
Many high efficiency optimization algorithms have been 

considered to enable real-time operation with MPC. Explicit 

methods move the computational burden offline and store the 

optimal control actions in a look-up table. The online 

computation effort can then be reduced to locating the 

measured initial state in the polyhedral partition and an affine 

function evaluation [24]. There are also fast MPC techniques 

such as move blocking, warm starting, or an early termination 

of an appropriate interior point method [25-27]. Such 

approaches will be considered in the future as necessary. In this 

study, as a first step to validate the problem formulation and the 

performance of defined constraints and cost function, as well as 

the performance of MPC with vehicle models of different 

fidelity, an exhaustive search is used as the dynamic optimizer. 

The optimal control sequence that can minimize the cost 

function and satisfy the constraints is selected from a discrete 

steering command pool of [ ]max max max max, / 2,0, / 2,δ δ δ δ− − , 

where maxδ  is determined based on Fig. 9. Starting from the 

initial state, the control commands from the pool are applied to 

the vehicle and the resulting trajectories are checked for 

constraint violation. If constraints are not satisfied, the search 

branch is terminated. Otherwise, next step prediction is 

performed by using the end state of last simulation as the initial 

state and applying all the steering commands from the pool. 

This process is repeated until a predetermined number of steps 

in the prediction horizon is reached. Once all the feasible steps 

are thus determined, their costs are evaluated and the control 

sequence with minimum cost is considered as the optimal 

control sequence. The first element of this sequence is applied 

to the vehicle, and the process is iterated in the next simulation 

step. This idea is illustrated in Fig. 12 with a steering command 

pool of only three elements for clarity. 

Prediction horizon and sampling time for the MPC are 

selected based on the speed of the vehicle, the minimum 

turning radius at that speed, and the detection range of the 

sensors to satisfy the following inequalities 

 
min

min

2

U n T D

R U n T

R S D

π
⋅ ⋅ ≤

≤ ⋅ ⋅

+ <

 (1) 

where U is the speed, D is the LIDAR detection range, Rmin is 

the vehicle’s minimum turning radius and S is the safety margin 

that accounts for the size of the vehicle. The first inequality 

simply states that the prediction horizon in terms of the traveled 

distance is limited by the sensor range. The second inequality 

ensures that the vehicle can make a 90° turn when necessary to 

avoid an obstacle. Finally, the last inequality ensures that there 

is enough distance between the vehicle and the obstacle during 

a 90° avoidance maneuver. 

Figure 13 illustrates how Fig. 2 is customized for the 

purposes of this study. 

SIMULATION RESULTS AND DISCUSSION 

To validate the algorithm and study the effect of the 

complexity of the vehicle model used in the MPC, two 

simulation studies are conducted with two different obstacle 

maps. The speed of the vehicle, U ,  is fixed to be 20 m/s. 

The number of steps n  in the prediction horizon is set to 4 

steps. Using the inequalities (1), the sampling time T  is set to 

 

FIGURE 12. ILLUSTRATION OF THE EXHAUSTIVE SEARCH 
METHOD USING A STEERING COMMAND POOL OF THREE 

ELEMENTS 

 

FIGURE 13. MPC-BASED HAZARD AVOIDANCE AS 
IMPLEMENTED IN THIS STUDY 
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1.25 s for the 14 DoF model and 1.70 s for the 2 DoF model. 

The LIDAR detection range D  is then determined to be 100 

m for the 14 DoF model and 136 m for the 2 DoF model. At 

each sampling cycle, the obstacle information is obtained from 

the LIDAR. A 2D LIDAR is assumed; i.e., the height of the 

obstacle is unknown. The LIDAR returns the distance between 

the vehicle and the closest obstacle boundaries in each radial 

direction at an angular resolution of 0.1°. The angular range is 

±90° with the vehicle heading direction being the 0° direction. 

No noise or uncertainties are considered. Simulations are 

carried out using variable time step solvers (ode45 for the 2 

DoF model, and ode23 for the 14 DoF model). Table I 

summarizes the parameters used in the simulation. 

Several metrics are used to compare the performance of the 

system using the two different vehicle models in the MPC. One 

metric is the total time used to reach the target. This is 

proportional to the travel distance because the velocity of the 

vehicle is maintained constant. Another metric is the minimum 

distance to obstacles; a smaller minimum distance means the 

vehicle moves closer to the boundary of the obstacles. Other 

metrics include the maximum roll angle, maximum lateral 

acceleration, average roll angle, and average lateral 

acceleration. Table II summarizes the performance metrics and 

Figs. 14 and 15 compare the trajectories for the two maps 

considered. 

The results with the 14 DoF model confirm that the 

presented formulation can successfully navigate the vehicle 

through the obstacle field to the target. For Map A, MPC with 

both the 2 DoF model and the 14 DoF model are successful in 

terms of avoiding the obstacles safely. When the 14 DoF model 

is used in the MPC, however, the algorithm performs better in 

terms of time to target and travel distance. This is due to the 

fact that MPC with the 14 DoF model uses a larger steering 

limit based on its capability to predict tire lift-off. 

For Map B, MPC with 2 DoF model cannot avoid the 

obstacles due to its conservative steering limit derived from its 

range of validity. MPC with the 14 DoF model shows that it is 

actually possible to navigate through this obstacle field safely at 

the given speed when the vehicle is operated closer to its limits. 

It is very important to note that these results do not 

immediately lead to the conclusion that a 14 DoF model must 

be used in the MPC. The results only establish the importance 

of operating the vehicle close to its limits for better 

performance. In the results so far, the range of validity of the 2 

DoF model has been used to determine the steering limits for 

that model, which prevented the MPC to push the vehicle to its 

limits. A different scenario is also conceivable in which the 

safety limits are established using the 14 DoF model, but the 

MPC still utilizes the 2 DoF model. The simulations for the two 

maps are repeated using this scenario and the results are 

summarized in Table III and Figs. 16 and 17. 

These results show that when the safe steering limits are 

established using the 14 DoF model, the performance with the 2 

DoF model can be very similar to the performance with the 14 

TABLE I. SIMULATION PARAMETERS 

Parameter 
Value 

2 DoF 14 DoF 

Vehicle speed, U 20 m/s 20 m/s 

Prediction horizon length, n 4 steps 4 steps 

LIDAR angular range ±90°  ±90°  
LIDAR angular resolution 0.1°  0.1°  
Weighting parameter w 100 100 

Maximum steering angle 2.8° 4.3° 

Minimum turning radius 86.6 m 63.7 m 
Planning sampling time, T 1.70 s 1.25 s 

LIDAR detection range, D 136 m 100 m 

Steering angle options ±2.8°, ±1.4°,0° ±4.3°, ±2.15°, 0° 

 

TABLE II. PERFORMANCE METRICS 

 MAP A MAP B 

 2 DoF 14 DoF 2 DoF 14 DoF 

Time to target (s) 32.3 29.4 - 50.7 

Travel distance (m) 641.2 582.2 - 1001.9 

Min distance to obstacles (m) 8.46 6.43 - 14.4 
Max roll angle (°) 1.59 2.11 - 2.12 

Max lateral acceleration (g) 0.506 0.684 - 0.68 

Avg roll angle (°) 1.21 1.34 - 1.33 
Avg lateral acceleration (g) 0.390 0.442 - 0.43 

 

FIGURE 14. VEHICLE TRAJECTORIES FOR MAP A 

 

FIGURE 15. VEHICLE TRAJECTORIES FOR MAP B 
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DoF model. For Map A, the 2 DoF model even outperforms the 

14 DoF model in time to target. The comparable responses are 

likely due to basic idea of MPC that only the first steering 

command is implemented even if the prediction is made over 

several steps. The prediction errors of the 2 DoF model 

accumulate only with time; hence the predictions of the 2 DoF 

and the 14 DoF models are closer to each other in the beginning 

of the prediction horizon than at the end. In addition, since 

MPC is repeated at every time step, the predictions of the 2 

DoF are corrected at each time step. Hence, 2 DoF model might 

be enough for the purposes of MPC under some conditions as 

long as the safe vehicle operation limits are established using a 

higher fidelity model. 

For the second map, Figures 18 and 19 show the vertical 

tire forces and the lateral accelerations, respectively. From Fig. 

18 it can be seen that the trajectories with both the 2 DoF and 

14 DoF models are dynamically safe in terms of tire lift-off and 

are close to the boundary. Fig. 19 shows that the maximum 

lateral acceleration when the vehicle steers at 4.3° is 

approximately 0.65 g, which is larger than 0.5 g, the range of 

validity of the 2 DoF model. Nevertheless, the 2 DoF still 

performs well because of the abovementioned reasons. 

This work has the following limitations. The vehicle speed 

is assumed to be constant and hence steering angle is 

considered as the only control input. Even though this reduces 

TABLE III. PERFORMANCE METRICS WHEN 14 DOF 
MODEL’S STEERING LIMITS ARE USED FOR 2 DOF MODEL 

 MAP A MAP B 

 2 DoF 14 DoF 2 DoF 14 DoF 

Time to target (s) 28.3 29.4 51.2 50.7 

Travel distance (m) 559.9 582.2 1013.0 1001.9 

Min distance to obstacles (m) 7.58 6.43 15.1 14.4 
Max roll angle (°) 2.11 2.11 2.12 2.12 

Max lateral acceleration (g) 0.684 0.684 0.68 0.68 

Avg roll angle (°) 1.26 1.34 1.33 1.33 
Avg lateral acceleration (g) 0.415 0.442 0.43 0.43 

 

FIGURE 16. VEHICLE TRAJECTORIES FOR MAP A WHEN 14 
DOF MODEL’S STEERING LIMITS ARE USED FOR 2 DOF 

MODEL 

 

FIGURE 17. VEHICLE TRAJECTORIES FOR MAP B WHEN 14 
DOF MODEL’S STEERING LIMITS ARE USED FOR 2 DOF 

MODEL 

  

FIGURE 18. VERTICAL TIRE FORCES FOR MAP B WHEN 14 
DOF MODEL’S STEERING LIMITS ARE USED FOR 2 DOF 

MODEL 

 

FIGURE 19. LATERAL ACCELERATIONS FOR MAP B WHEN 
14 DOF MODEL’S STEERING LIMITS ARE USED FOR 2 DOF 

MODEL 
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the control input search space, it also potentially limits the 

performance of the algorithm. It also limits the obstacle fields 

that the UGV can go through safely without decelerating and 

accelerating. The 14 DoF employed in this study is certainly 

not the highest fidelity model available, but it was used in this 

paper as a first step towards higher fidelity models. Models 

derived using a multibody approach [28] can potentially 

improve the performance even further. It is also reasonable to 

expect an even better performance from higher fidelity models 

when uneven terrains, more realistic tire-terrain interactions, 

and uncertainties are included in the model. Finally, 

computational aspects of the algorithm need to be evaluated 

and solutions for a real-time implantation using high 

performance computing architectures need to be developed. 

CONCLUSIONS 

The paper presents the development of an MPC-based 

framework for hazard avoidance in large UGVs with significant 

vehicle dynamics. Unlike the existing MPC-based approaches, 

the framework uses only local information about the 

environment available from onboard sensors. The developed 

formulation is tested in simulation using a 14 DoF model of a 

typical 4 wheel truck as the vehicle platform and shows that the 

vehicle can navigate safely through two obstacle fields and 

reach the target.  

The paper further investigates the effect of the fidelity of 

the model used in MPC on the performance of the hazard 

avoidance maneuver, where performance is characterized 

mainly by the time-to-target metric. Towards this end, two 

different models are used in the MPC; the 14 DoF model and a 

2 DoF representation. The 2 DoF model is the typical choice in 

the literature for MPC and hence is used in this study as a 

benchmark. The results show that the 2 DoF does not give the 

best performance when the steering limits are based on the 

model’s range of validity. Due to this conservative approach, 

the 2 DoF model may even fail to navigate the vehicle safely 

through an obstacle field that can actually be navigated safely 

with the 14 DoF model. However, the 2 DoF model can 

perform comparable to the 14 DoF model when the safe 

steering limits are derived from the 14 DoF model. 

 Hence, the conclusion is that higher fidelity models are 

needed for autonomous navigation to push the vehicle to its 

limits for best performance. However, that does not necessarily 

mean that the high fidelity model must be used within the 

MPC. A mixed-fidelity approach in which the safe operating 

limits are established using a higher fidelity model and the 

MPC is performed with a lower fidelity model may be adequate 

for satisfactory results. The right amount of fidelity that needs 

to be included in the MPC model is still subject to future 

research. 
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